

roz

IF₂

Presentation

- 1. Sør-Østerdal (SØ):
 - General facts
 - Statistics
 - Predictions
- 2. Regional Energy Analysing Model (REAM):
 - Input data
 - Sources

SØ: General facts

Elverum

1229 km², 19200 inhabitants. Urban settlement, increasing population

- Trysil
 3015 km², 6800 inhabitants. Mixed settlement, decreasing population
- Åmot
 1339 km², 4300 inhabitants. Mixed settlement, increasing population
- Stor-Elvdal
 2167 km², 2700 inhabitants. Rural settlement, decreasing population
- Engerdal
 2195 km², 1500 inhabitants. Rural settlement, decreasing population

SØ: Large scale energy production

• Elverum

Hydro power, district bio heating, methane gas from waste

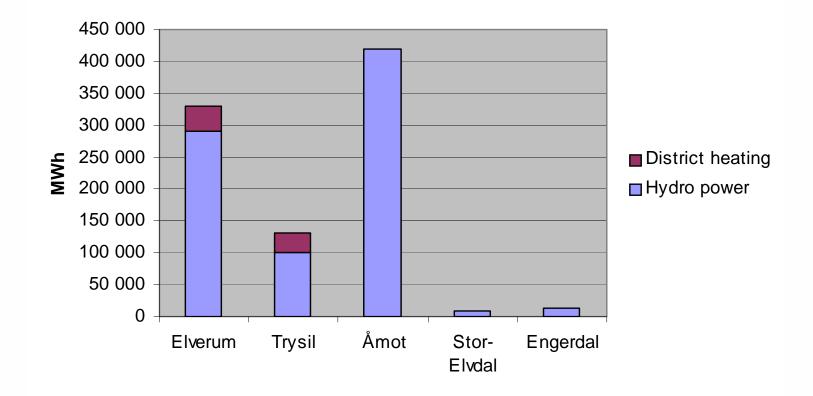
• Trysil

Hydro power, district bio heating. Plans to establish pelletizing prod.

• Åmot

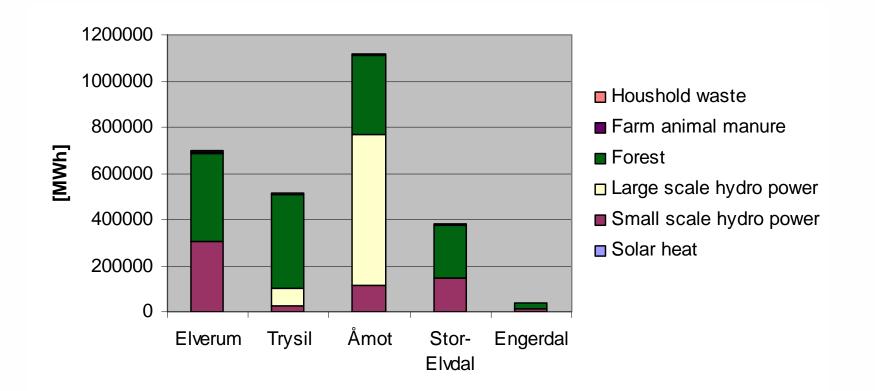
Hydro power. Plans to establish district bio heating

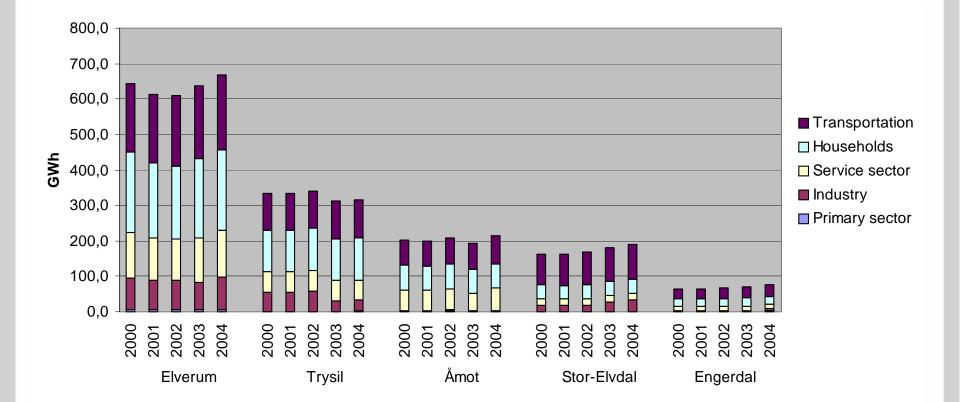
• Stor-Elvdal


Hydro power. Plans to establish district bio heating

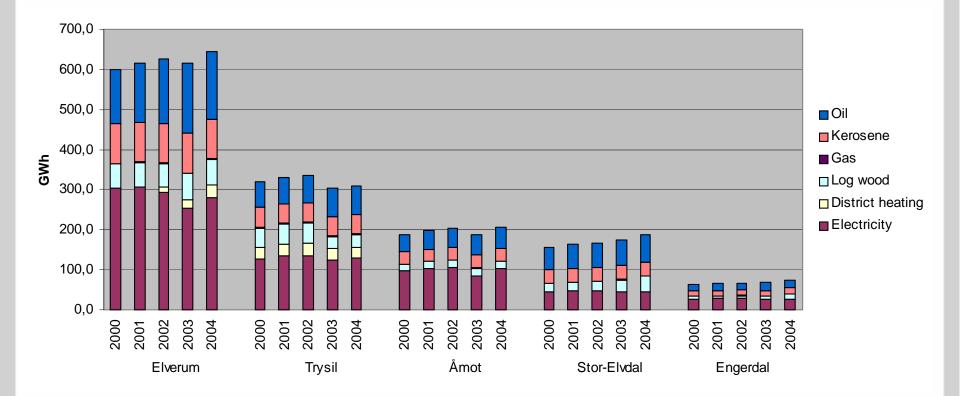
Engerdal

Hydro power

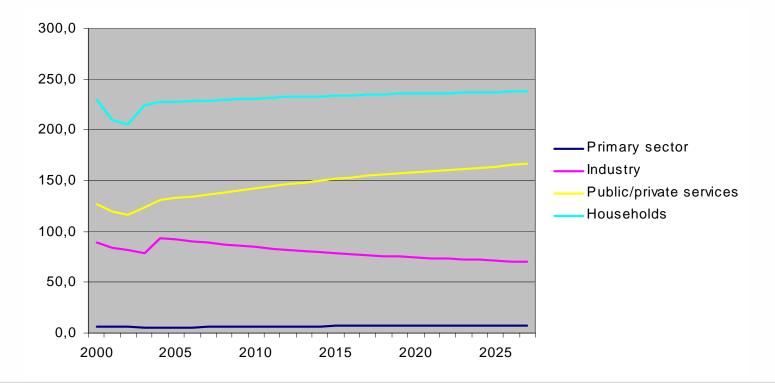

SØ: Large scale energy production



SØ: Energy resources


SØ: Energy demand, 2000-2004

SØ: Stationary energy demand, 2000-2004



SØ: Predicted energy demand, 2007-2027

Example: Elverum, based on historical demand 2000-2004

<mark>⊳</mark>lo¦⊂

Presentation

- 1. Sør-Østerdal (SØ):
 - General facts
 - Statistics
 - Predictions
- 2. Regional Energy Analysing Model (REAM):
 - Input data
 - Sources

REAM: Small Scale Systems

- Demand technologies
 Example: Households in Elverum
 - Electric panels
 - Heat exchanger (district heating)
 - Wood stove + electric panels
 - Gas stove + electric panels
 - Oil boiler
 - Pellet boiler
 - Paraffin stove + electric panels
 - Heat pump(air/air) + electric panels
 - Heat pump(ground/water)

REAM: Small Scale Systems

• Based on predicted demand, 2007-2027 Example: Energy types: Heating and electricity

	Heating	Electricity
Primary sector	60%	40%
Industry	70%	30%
Service sector	55%	45%
Households	60%	40%

REAM: Small Scale Systems

• Extra investments

Example: Households

- Chimney
- Central heating
- Fee share Example: Households
 - CO_2 , NO_x , Sulphur: 0 %

REAM: Demand technologies

- Technical data: Capacity
 - Capacity Residual: stationary energy demand for each fuel in each sector makes out first years capacity residual
 - Fixed/upper/lower capacity: corresponding to expected or required development throughout period for each scenario
- Technical data: Fuels
 - Example: Electric panels + wood stove

	Efficiency	Maximum share
Electricity:	100 %	100 %
Log wood:	70 %	30 %

REAM: Demand technologies

Economical data

	Invest. cost	Life length	Extra invest.
	[kr/Mwh]	[years]	
Electric panels	1100	20	
Heat exchanger	400	20	Central heating
Oil boiler	2300	15	Chimney & central h.
Pellet boiler	3200	20	Chimney & central h.
Kerosene stove	2500	15	Chimney
Gass stove	2000	15	Chimney

REAM: Demand technologies

• Emissions

• Example: Oil

CO ₂ :	78 g/MJ
NO ₂ :	40 mg/MJ
Sulphur:	23 mg/MJ

• Grids

• Choose distribution grid, if any.

REAM: Large Scale Systems & Grids

- The region of Sør-Østerdal:
 - Hydro power: LSS joint for each municipality Grid joint for entire region
 - District heating: Each system
- Other
 - Nuclear power
 - Gas distribution
 - Minigrids (district heating)
 - Etc..

REAM: Large Scale Systems & Grids

- Equivalent to demand technologies in small scale systems:
 - Technical data: Capacity, Fuels
 - Economical data: Investment costs, Life length
 - Emissions
 - Grids: Efficiency

REAM: Emissions

- Defining of each emission category and corresponding unit
 - CO₂: g/MJ
 - NO_X: mg/MJ
 - Sulphur: mg/MJ
- Existing emission fee and expected development throughout period (restricted by fee share in each sector)
 - Example: CO_2 : 203 kr/tonne, 2 % increase p.a.

REAM: Fuels

- Defining of each fuel type
- Economics: Existing prices, and expected development throughout analysing period

Example: Oil, year price

- Fuel price: 670 kr/MWh, 2 % increase p.a.
- Fuel tax: CO₂-tax: Energy tax:

-

42,8 kr/MWh, 2% increase p.a.

• Emission: Emission in LCA-perspective

